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ABSTRACT: Optical rotation (OR) measurements are a common method
for distinguishing chiral compounds, but it is not well understood how intra-
and intermolecular interactions affect this electronic property. Theoretical
comparisons with solution-phase measurements are hampered by the
difficulty of modeling solvent effects and the isotropic averaging of the
experimental observable. Solid-state OR experiments/calculations could
alleviate these difficulties, but experimental measurements are challenging
and computational efforts have been limited due to a lack of existing
procedures. We report calculated OR tensor values for a series of helices of
diatomic molecules that may serve as a benchmark in the development of
general-purpose electronic structure methods to compute the optical
rotation of solids, in particular, molecular crystals. We find that the OR
tensors for small helix clusters show poor agreement with values converged
with respect to the helix size, regardless of unit cell size. The dependence of
the converged OR on the dihedral angle of homonuclear helices is well described by the Kirkwood polarizability model,
indicating that nearest-neighbor interactions are very important, albeit not the only relevant interactions. Basis set comparisons
suggest that the aug-cc-pVDZ basis is sufficient to obtain qualitatively accurate results.

1. INTRODUCTION

Controlling supramolecular chirality is an active area of
research with applications in nanostructure assembly,1−3 drug
design,4 and enzymatic/bioinspired catalysis.5,6 Optical activity
measurements are commonly used to distinguish the chiral
species generated in these experiments, but it remains poorly
understood how the structure of a molecule and intermolecular
interactions relate to the observed optical rotation (OR,
referred to as specif ic rotation when it is normalized with
respect to concentration and path length). Comparisons
between computation and experiment could clarify this
structure−property relationship, but such comparisons are
hampered by limitations of existing theoretical methods. Most
experimental measurements of optical activity are performed in
solution, but theoretical methods to account for solvent effects
are either highly costly or unable to account for specific
solute−solvent interactions, making comparison with experi-
ment challenging. Calculations of OR in isotropic media are
also highly sensitive to cancellation effects: elements of the OR
tensor can vary in sign and magnitude, so the calculated
specific rotation, proportional to the trace of the OR tensor,7,8

can be greatly influenced by small errors in OR tensor
components. In experiment, one only obtains the isotropic
specific rotation, not the OR tensor components, so
comparison can show that a calculation is incorrect but not
what is causing the error.

Some experimental work has sought to address these
limitations by making measurements in different phases.
Vaccaro et al. have used cavity ring-down polarimetry to
study optical rotation in the gas phase.9,10 Gas-phase
measurements and calculations do not need to take into
account intermolecular interactions, but they still need to deal
with spatial averaging of the observable. Kahr and co-workers
have enhanced techniques for isolating the OR of crystals from
the typically much larger linear birefringence signal.11−13

These solid-state measurements represent valuable benchmark
data for theoretical comparison. While it is in principle possible
to calculate the OR of solids and extended systems, one issue
that remains is the development of a general computational
procedure to do so. Perhaps due to the lack of experimental
data available, neither classical nor first-principles techniques
for calculating the OR of solids have been thoroughly pursued.
To the best of our knowledge, the works of Zhong et al.,14,15

using a combination of local density approximation density
functional theory (DFT) and Green’s functions, and Devarajan
and Glazer,16 utilizing the classical polarizability theory of
optical rotation, have been the only attempts at developing
such methods. However, both approaches rely on ad hoc
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assumptions and parametrizations, thus lacking a truly general
applicability.
In this work, we calculate the OR tensor of long helical

chains of diatomic molecules (using the well-established
procedure for isolated molecules) as a simple model for the
behavior of extended systems. These calculations test the
specifications, for example, cell size and basis set requirements,
needed to accurately calculate the OR of infinite systems with
the goal of using this information to develop and benchmark
an efficient, general-purpose procedure to compute the optical
activity of solids, in particular, molecular crystals.
The paper is organized as follows. In Section 2, we describe

how the OR tensor is computed using the linear response
formalism and our computational procedures. In Section 3, we
present how the OR is influenced by the length and orientation
of the helices, as well as the basis set used. We conclude the
paper with a discussion of these results and their implications
in Section 4.

2. THEORY

2.1. OR Tensor. Optical activity is governed by the rank-2
Buckingham/Dunn B tensor:7,8
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2 ; is the magnetic dipole operator, and
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1
2

2 is the traceless electric quadru-

pole operator, with Greek indices denoting Cartesian
coordinates; the sums in these operator definitions are over
all of the electron coordinates of the molecule. ω is the
frequency of the incident electromagnetic radiation, while |ψj⟩
and ωj are the jth excited state wave function and excitation
frequency, respectively. These definitions are valid for
nonresonant optical activity (ωj ≈ ω) calculations; resonant
optical activity is discussed in greater detail elsewhere.7,17,18

β and A are, respectively, the frequency-dependent electric
dipole−magnetic dipole and electric dipole−electric quadru-
pole polarizability tensors. Note that β is not to be confused
with −ωβ = G′, which is also referred to as the electric dipole−
magnetic dipole polarizability tensor and was used in the
original formulation of the Buckingham/Dunn tensor.7,8 While
β and A are formally defined by eqs 2 and (3), direct
application of these equations is impractical due to the large
number of excited states needed to converge the OR tensor.19

We instead compute the tensor via the linear response
formalism, as detailed in Section 2.2.
The OR is commonly reported in terms of specific rotation

(deg [dm (g/mL)]−1) for isotropic media (e.g., gases and
solutions), given by

θ
ωμ ωμ

Δ = − + + = −
m

B B B
m

B
1
3

( )
1
3

Tr( )xx yy zz
0 0

(4)

where μ0 is the permeability of free space, and m is the
molecular mass. Contributions from A cancel out in this trace,
so many prior studies20−23 that focused on isotropic substances
simply computed β to obtain the OR. For oriented materials
(e.g., molecular crystals), individual Cartesian components of
the OR tensor can be resolved experimentally, so it is
important that we do not neglect the contributions from A. It
is also convenient for calculations of oriented structures to
reformulate B as

δ̃ = [ − ]αβ αβ αβB BB
1
2
Tr( )

(5)

Letting n be a unit vector in some direction, the OR parameter
βn, which is proportional to the specific rotation, is given as

β = ̃†nBnn (6)

By defining this alternative chiroptical response tensor, one can
easily compute the specific rotation for light traveling in an
arbitrary direction relative to the oriented material.8,17

2.2. Linear Response Formalism. While it is formally
possible to compute the OR tensor using the sum-over-states
formulas of eqs 2 and (3), this approach requires prohibitively
many excited states for the series to converge.19 To circumvent
this high cost, we instead compute the OR tensor using the
linear response formalism.24−26 This approach provides the
same value of the property, but it casts the equations in terms
of perturbations of the electron density due to an external
oscillating field.27 Adopting notation used by McWeeny24 and
Autschbach,8 we can define the frequency-dependent polar-
izability Π(RS|ω) of a quantity R with respect to a
perturbation S of frequency ω as
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where, in Kohn−Sham DFT, Rα,ai = ⟨a|Rα|i⟩, Sβ,ai = ⟨a|Sβ|i⟩,
Mia,jb = (ϵa − ϵi)δijδab + Kaj,ib, and Qia,jb = Kab,ij with i, j denoting
occupied orbitals and a, b denoting virtual orbitals.

= ⟨ | | ⟩ + ⟨ | ′ | ⟩− ′K aj ib aj f r r ib( , )aj ib r r,
1 XC which gives the cou-

pling due to Coulombic interactions and the exchange
correlation kernel f XC(r,r′) of the functional.
To avoid explicitly forming Ω−1, the perturbed density is

evaluated by solving the linear system
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This gives an amplitude vector that can be computed
iteratively without the need to perform a costly (and often
numerically unstable) matrix inversion, leading to faster
calculations of the polarizability tensors.28 To determine β,
we solve eq 8 with Sβ = μβ and insert the result into (7) with Rα

= mα, calculating the magnetic dipole induced by a time-
dependent perturbing electric field (for variational methods, it
would be equivalent to reverse the definitions of Rα and Sβ and
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consider the electric dipole induced by a time-dependent
magnetic field).8 Similarly, to obtain A, the result of solving eq
8 with Sγ = μγ is inserted in eq 7 with Rαβ = Θαβ, which gives
the electric quadrupole induced by a time-dependent electric
field.
2.3. Computational Procedure. In this paper, we

consider helices formed from five diatomic molecules: H2,
N2, F2, HF, and LiH. Note that the optical activity in these
model systems is solely generated by the supramolecular
structure of the helices, as the individual molecular units are
achiral. To generate the helices, we first orient a single
diatomic molecule along the y-axis, with the origin centered
either on one of its atoms (CA) or its center of mass (COM).
We then add more units with coordinates determined by
translating a distance R along the z-axis and rotating θ degrees
counterclockwise in the xy plane. For each diatomic molecule,
helices were generated with 15° increments up to 165°. Helices
with 0° or 180° rotation have a plane of symmetry, and so they
do not exhibit isotropic specific rotation; for these helices, this
is not due to cancellation in the trace of the OR tensor, but
rather from each diagonal component individually being zero.
For this reason, we do not perform any further analysis of the
OR tensor for these helix conformations. The distance R varies
for the different molecules, with H2 units separated by 2.0 Å;
N2, F2, and HF units separated by 3.5 Å; and LiH units
separated by 5.0 Å. These distances were chosen so that the
molecular units would be close enough to retain significant
intermolecular interactions while avoiding large electron
density overlap between neighboring units. Experimental

bond lengths from the NIST CCCBDB database29 were
used for each molecule: RH2

= 0.741 Å, RN2
= 1.098 Å, RF2 =

1.412 Å, RHF = 0.917 Å, RLiH = 1.595 Å.
For each helix, the response to a 589.3 nm electromagnetic

perturbation was computed using linear response as described
in Section 2.2. All calculations were performed using a
development version of the Gaussian suite of programs,30

with the CAM-B3LYP functional31 and aug-cc-pVDZ basis32 in
the length gauge representation, using gauge including atomic
orbitals (GIAOs)33 to ensure origin independence (origin
independence could also be achieved using the modified-
velocity gauge without GIAOs, but this leads to slower
convergence of the OR with basis set size25). This choice of
functional and basis set has been shown to accurately
reproduce the OR obtained from experiment8,34 and higher
levels of theory.35

Since these helical systems cannot be experimentally realized
nor have they been studied computationally, it is useful to have
a model that can be related qualitatively to the calculated
results. We compare these computed values with predictions
based on the semiempirical Kirkwood polarizability
model,17,21,36,37 which expresses the optical rotation in terms
of the mean polarizability and anisotropy of interacting groups.
The model suggests that two interacting groups with Cnv(n >
2) symmetry will contribute to the optical rotation in
proportion to sin(2θ), where θ is the dihedral angle between
the groups.17 This model can offer insight into the locality of
interactions within the helices, since interactions beyond those

Figure 1. Plots of contributions to/components of B̃ (a.u.) for a H2 helix with 45° rotation about the COM and H atom axes. The separation
between hydrogen molecules is 2.0 Å. Each value is scaled by the inverse of the number of units in the helix.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b12084
J. Phys. Chem. C 2019, 123, 4329−4340

4331

http://dx.doi.org/10.1021/acs.jpcc.8b12084
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b12084&iName=master.img-001.jpg&w=450&h=328


of nearest neighbors should introduce sin(2kθ) contributions
(k = 2,3,···).

3. RESULTS

To analyze the OR tensor, we plot the Cartesian components
of B̃, the contributions of β and A to these components, and
Tr(B̃). All component contributions/values are scaled by the
inverse of the number of units in the helix so that they can be
directly related to the specific rotation. Since the helix is not
periodic in the x or y direction, the XX and YY component
contributions are combined to reflect the averaged value that
would be observed in a hypothetical experimental measure-
ment. We include plots of the trace of the OR tensor for
completeness and clarity of certain comparisons; we emphasize
that, for solid-state calculations, the specific rotation in each
direction is given by eq 6, rather than the trace of B̃, as there is
no isotropic averaging.
In Section 3.1, we discuss the dependence of the OR tensor

components (in particular, how quickly they converge) on the
length of the helix considered. In Section 3.2, we discuss how
the dihedral angle between each molecular unit influences the
OR and utilize the Kirkwood model to probe interaction
distances within the helices. In Section 3.3, we examine the
basis set dependence of the results obtained for H2.
3.1. Length Dependence. To model the calculation size

necessary to converge the OR tensor components, we created
helices of various lengths for each of the diatomic molecules.
For H2, we constructed all helices with up to 300 molecules for
each dihedral angle and rotation axis considered, while for the

other four molecules we obtained all lengths up to 100
molecules. We plot the diagonal Cartesian components of B̃, as
well as the contributions to these components from β and A,
with respect to the number of molecular units for
representative helices with θ = 45° in Figures 1−4.
As expected based on the sum-over-states formula, the

contribution of A to Tr(B̃) is zero (i.e., XX + YY = −ZZ), and
this is the case for all the types of diatomic helices tested.
However, the A tensor does influence the relative and absolute
magnitude of the directional components of B̃. For the COM
helix described in Figure 1, had we assumed that β on its own
represented the OR, the XX + YY and ZZ components would
be predicted to have nearly equal magnitude, but with the
contribution from A included, the ZZ component is actually
∼3 times larger than the XX + YY. For the H axis helix, A
contributions essentially invert the ratio between the Cartesian
components. These examples illustrate that including the
electric dipole−electric quadrupole contribution is crucial to
obtain the correct qualitative relationship between the
Cartesian components of the OR tensor.
The homonuclear molecules exhibit remarkably similar

variation of the OR tensor with respect to length, as can be
seen by comparing Figures 1−3. This similarity holds across
the whole range of dihedral angles, which implies that the
qualitative OR behavior of these homonuclear systems is
largely governed by the helix geometry rather than by the
nature of the substituents. For H2, the Cartesian components
of B̃ are typically 95% of their converged value within ∼25−35
molecules for all dihedral angles. For N2, F2, and HF, ∼20

Figure 2. Plots of contributions to/components of B̃ (a.u.) for a N2 helix with 45° rotation about the COM axis and N atom axes. The separation
between nitrogen molecules is 3.5 Å. Each value is scaled by the inverse of the number of units in the helix.
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molecules are needed to reach 95% of the converged value for
every dihedral angle (LiH exhibited markedly different
convergence behavior than the other molecules; thus, it will
be treated separately below).
For small clusters (∼2−7 molecules), the OR tensor

components do not agree with their converged values. The
OR components of the small helices vary inconsistently with
increased length, unlike the monotonic convergence seen for
larger helices, making it impossible to extrapolate to the large
helix limit. In fact, the components for the small helices can
even have the wrong sign compared to their converged values.
Interestingly, this poor agreement for small helices, and the
rate of convergence in general, seem to be independent of unit
cell size. The latter depends on the intermolecular relative
orientation, determined by the angle θ, and varies between
2(COM homonuclear)/3(CA or heteronuclear) molecular
units for θ = 90° and 12(COM homonuclear)/24(CA or
heteronuclear) molecular units for θ = 15°, 75°, 105°, 165°.
One might have expected that helices with a smaller unit cell
would have required fewer units to converge their OR tensors,
as the structure is in some sense more complete for a given
number of molecules. Furthermore, molecular crystals that are
periodic in two or three dimensions will likely require many
more molecules to converge the OR tensor than these simple
models. On the basis of the deviation from the converged OR
tensor values for these small helices, we expect that calculations
on just the unit cell will not be sufficient to obtain accurate
results. This indicates that calculations on finite clusters are

likely not practical for more realistic systems, and periodic
boundary conditions (PBC) may be necessary.38,39

Changing the separation distance between molecules does
not qualitatively alter β and A, but it does affect their relative
contributions to B̃, as shown in Figure 5 for H2. These plots
are for helices with the same dihedral angle as Figure 1 but
with the separation distance between units increased from 2.0
to 3.0 Å (the latter plots only extend to helices 100 molecules
in length, as the tensor components were sufficiently
converged by this point). The β contribution to each
component decreases in magnitude, while the A contributions
increase in magnitude. Since the ZZ contribution from each
tensor is negative, B̃ZZ remains negative and essentially of the
same magnitude, but the XX + YY contributions have different
signs, and the shift in magnitude causes this component of B̃ to
become positive. This again highlights the importance of the A
tensor contributions: not only are the components of β and B̃
qualitatively different for a given separation distance but they
also do not respond in the same manner to a change in
separation distance.
In the prior analysis, we did not discuss LiH helices; unlike

the other molecules, the B̃ tensor components for many of the
LiH helices do not converge with the length of the helix, as
shown in Figure 6 by the plots of the H axis rotated helix. The
slow convergence of the OR tensor is particularly noticeable in
the plot of Tr(B̃). Even considering helices of length up to 250
units, Tr(B̃) continues to change significantly when additional
units are added. Changing the separation distance between
LiH units from 5.0 to7.5 Å or 10.0 Å (reported in Figures S1

Figure 3. Plots of contributions to/components of B̃ (a.u.) for a F2 helix with 45° rotation about the COM and F atom axes. The separation
between fluorine molecules is 3.5 Å. Each value is scaled by the inverse of the number of units in the helix.
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and S2 of the Supporting Information) did not make the
Tr(B̃) curves smoother, although it did improve the rate of
convergence for the 10.0 Å separation. That the error persists
at different separation distances shows that it is not simply a
consequence of the chosen geometry. Hartree−Fock calcu-
lations of the trace (see Figure S3 in the Supporting
Information) seem to converge, albeit with oscillations about
the converged value. To test whether the error is due to basis
set incompleteness, Figure S4 in the Supporting Information
reports Tr(B̃) calculated with the aug-cc-pVTZ basis, which
shows that the OR tensor still fails to converge for some
orientations and exhibits small oscillations throughout. These
oscillations and jagged appearance of the Tr(B̃) curve occur in
both DFT and Hartree−Fock calculations, suggesting they
may be caused by edge effects from our finite model. Such
edge effects may be present also in cluster models of realistic
chiral crystals, further highlighting potential pitfalls of using
finite models to describe solid crystals.
3.2. Angle Dependence. To study the influence of the

helix geometry on the OR, we consider how the converged
values of the OR tensor and its contributions vary as functions
of the dihedral angle between units. In Figure 7, we plot the
Tr(B̃) values for a series of H2 helices with different dihedral
angles θ for rotations around the COM and H atom axis. The
plots for the individual components of the B̃ tensor are
reported for all molecules (but LiH) in Figures S5−S13 of the
Supporting Information. The plots in Figure 7 seem to have a
sinusoidal dependence on the angle that can be rationalized
through the semiempirical Kirkwood polarizability model, as

mentioned in Section 2.3.21,37 Since the units of the helices
have D∞h or C∞v symmetry depending on whether the
molecule is homonuclear or heteronuclear, the Kirkwood
model predicts interacting molecules will contribute to the
optical rotation as ∼sin(2θ′) with respect to the angle θ′
between them. For a given helix, θ′ = kθ, k = 1,2,···.
To see how well this model describes the results, we fit

Tr(B̃) for each type of helix (excluding LiH, as its Tr(B̃) did
not converge for many different dihedral angles and rotation
axes) to the functional form C sin(νθ), using a nonlinear
regression, where C and ν are varied to minimize the sum of
the mean-squared error with respect to the computed values.
Figure 7 reports the fitted line for the H2 helices (similar plots
for N2, F2, and HF are given in Figures S14−S16 of the
Supporting Information), while Tables 1 and 2 report the fitted
C and ν parameters for all molecules. The fits for each axis are
∼sin(2θ), which suggests that the largest contribution to the
OR comes from nearest-neighbor interactions. Interestingly,
the individual components of the (B̃) tensor show a sinusoidal
behavior only for helices with the COM axis, while for the
helices with the axis on one of the atoms, only Tr(B̃) has a
sinusoidal shape; see Figures S5−S13 in the Supporting
Information.
Fitting the data a function of the form C sin(νθ) + D sin(ηθ)

reduces the sum of the mean-square error by a factor of 2−4.
These values are also reported in Tables 1−2 for all molecules
(except LiH). For the homonuclear molecules, the refitting
only marginally changes the values of C and ν (typically
resulting in ν being closer to 2); D is anywhere from 4 to 10

Figure 4. Plots of contributions to/components of B̃ (a.u.) for a HF helix with 45° rotation about the COM, H atom, and F atom axes. The
separation between HF molecules is 3.5 Å. Each value is scaled by the inverse of the number of units in the helix.
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times smaller than C, and η ≈ 3.95 for each molecule. These η
and D values are consistent with the Kirkwood term arising
from 2nd nearest-neighbor interactions, which we would
expect to be the next largest contribution to the OR. For HF,
while the error is reduced by the double sin fit, the ν and η
parameters obtained for COM and F axis rotation clearly do
not align with the Kirkwood model prediction. Different initial
guesses for the HF double sin fit parameters did not decrease
the mean squared error, nor did they significantly improve
agreement with the Kirkwood model relative to the double sin
fit in Tables 1 and 2. It is noteworthy that homonuclear H2 and
F2 are described quite well with the Kirkwood model, but a
heteronuclear combination of these elements generally does
not agree with the model.
While the Kirkwood model provides a reasonable first-pass

description of the OR, it is not a complete model even for
homonuclear molecular units. In particular, angles close to 0°
and 180° deviate from the fit, and the extrema of the fits (45°
and 135°) do not match the extrema of the data (30° and
150°). While closer, the double sin fits’ extrema also fail to
match the data in the same regions. Since Kirkwood
contributions all have the form sin(2kθ), the model predicts
that interacting groups rotated by 90° cannot contribute to the
optical rotation; however, the atom axis helices for all
molecules have a nonzero trace at 90°. Unlike rotation
through the COM, 90° atom axis rotations leave the helix
chiral; thus, Tr(B̃) can only be zero accidentally in this case.
Moreover, a description of the OR in terms of solely local (kth
nearest neighbor for small k) interactions would not be

consistent with the results in Figures 1−4, as this would cause
the OR tensor components to reach their converged values
sooner. The fact that the OR tensor takes ∼25 units to
converge suggests there must be some longer-range effects at
play that are not properly described by the Kirkwood model
and might be teased out from PBC calculations.

3.3. Basis Sets. The aug-cc-pVDZ basis set is generally a
good compromise between computational cost and accuracy.
However, in developing a solid-state OR procedure, it is
important to verify that the conclusions we have drawn with
this basis set are qualitatively consistent with the results of
more complete basis sets. To this end, we compare aug-cc-
pVDZ results for H2 with calculations using aug-cc-pVTZ. In
Figure 8, we plot the tensor contributions to/components of B̃
using the aug-cc-pVTZ basis set, along with Tr(B̃) for the
same H2 helix as in Figure 1. Because of the cost associated
with increasing the size of the basis set, results were only
obtained for helices up to 100 molecules in length, which is
sufficient to observe convergence of the tensor components.
The tensor components obtained using the triple-ζ basis set
exhibit similar qualitative behavior with respect to convergence
as their double-ζ counterparts. The only noteworthy difference
is that the B̃ components shift to decrease their magnitude,
leading to reduced optical response. This effect is essentially
absent for the 90° helices, but it increases as θ goes toward 0°
or 180°.
One exception to the qualitative similarity of the OR tensors

in each basis set is the 15° helix, which shows an unusual stair-
step pattern in the OR tensor and its trace; see Figure 9. These

Figure 5. Plots of contributions to/components of B̃ (a.u.) for a H2 helix with 45° rotation about the COM axis. The separation between hydrogen
molecules is 3.0 Å. Each value is scaled by the inverse of the number of units in the helix.
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sharp jumps seem to be an unphysical artifact of the basis set,
as evidenced by the incongruity between the periodicity of the
steps and any geometric feature of the helix. To probe what
part of the basis set causes this behavior, we repeated the
calculations by systematically removing diffuse functions from
the aug-cc-pVTZ basis. We focused on diffuse functions,
because they have been shown to be more important for
accurately computing the OR than other elements of the basis

set.23 On the one hand, we find that removing the s-type
diffuse functions from the basis eliminates the sharp jumps and
changes the values of the tensor components. On the other
hand, removing d-type diffuse functions has little effect on the
component values, while removing the p-functions substan-
tially alters the OR tensor, leading to poor agreement with
larger basis set results (vide infra).
To see whether this unphysical effect is present for larger

bases and to test the accuracy of these diffuse-removed basis
sets, we recalculated the OR using aug-cc-pVQZ and aug-cc-
pV5Z, along with their variants, where some of the diffuse
functions were removed. Figure 10 plots the trace of the OR
tensor for a selection of these basis sets. We use the aug-cc-
pV5Z results as the standard for accuracy, given that this is the
largest basis set considered, although we note that p-pV5Z (the
same basis set, but with only the p-type diffuse functions) gives
very similar results. There are still jumps in B̃ for the aug-cc-
pVQZ basis; however, they do not occur in the same locations
as they did for the aug-cc-pVTZ basis, supporting their
unphysical nature. Comparing the fully augmented basis
functions to those with just p-type diffuse functions, the
results show that not only does removing the s-type functions
smooth out the curves of Trace(B̃) but it also brings their
values closer in line with those of the aug-cc-pV5Z basis set.
This is a promising result, as it suggests that the accuracy of a
large basis set can be achieved using a smaller cc-pVXZ basis
with fewer diffuse functions.

Figure 6. Plots of contributions to/components of B̃ (a.u.) for a LiH helix with 30° rotation about the COM, Li atom, and H atom axes. The
separation between LiH molecules is 5.0 Å. Each value is scaled by the inverse of the number of units in the helix.

Figure 7. Converged Tr(B̃) (a.u.) for H2 helices with θ° rotation
about the H atom and COM axes. Points are the calculated values,
and solid lines are single sin fits to the same colored calculated values.
The separation between hydrogen molecules is 2.0 Å.
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4. DISCUSSION AND CONCLUSIONS

This work provides benchmark data on a set of helical chains
of diatomic molecules as a first step toward developing a
general purpose electronic structure method to compute the
OR of solids. We study the rate and extent of convergence of

the OR tensor, B̃, with respect to the length of the helix, and
we find that the values for unit cell sized clusters do not agree
with the converged values for these helices. This lack of
dependence on the unit cell size holds across different
molecules and helix conformations, suggesting larger calcu-

Table 1. Fitting Parameters for Single and Double sin Fits of Tr(B̃) for COM Axis Rotationsa

COM axis helices single sin fit double sin fit

fitting parameters C × 102 ν C × 102 ν D × 102 η

H2 −9.69 1.951 −9.81 1.992 −2.38 3.924
N2 −21.9 1.980 −22.0 1.998 −2.35 3.943
F2 −26.6 1.963 −26.8 1.996 −5.33 3.946
HF −0.932 1.743 −0.935 1.346 −0.601 2.338

aParameters were determined via nonlinear regression to minimize the sum of the mean-squared errors with respect to the calculated values of
Tr(B̃) for each helix.

Table 2. Fitting Parameters for Single and Double sin Fits of Tr(B̃) for Atom Axis Rotationsa

atom axis helices single sin fit double sin fit

fitting parameters C × 102 ν C × 102 ν D × 102 η

H2 −10.0 2.001 −10.3 2.034 −1.91 3.853
N2 −17.9 1.946 −18.3 1.979 −2.67 3.706
F2 −21.2 1.921 −21.8 1.979 −5.35 3.774
HF(H) −1.45 1.885 −1.43 1.902 −0.296 4.140
HF(F) −0.940 1.721 −0.932 1.341 −0.597 2.337

aParameters were determined via nonlinear regression to minimize the sum of the mean-squared errors with respect to the calculated values of
Tr(B̃) for each helix.

Figure 8. Plots of contributions to/components of B̃ (a.u.) for a H2 helix with 45° rotation about the H atom and COM axes. Calculations were
performed using aug-cc-pVTZ basis set. The separation between hydrogen molecules is 2.0 Å. Each value is scaled by the inverse of the number of
units in the helix.
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lation cells may be needed, particularly for the more relevant
three-dimensional (3D) periodic compounds that we intend to
study. The OR behavior of the helices of homonuclear
molecular units with respect to the dihedral angle θ is in good

agreement with the semiempirical Kirkwood polarizability
model, indicating that nearest-neighbor interactions are the
strongest contributions to the OR. At the same time, this
simple model is not able to account for important long-range,
cumulative interactions, and it does not describe heteronuclear
helices very well. The difficulties of the Kirkwood model in
describing even such simple systems reveal that approaches
based on local polarizability may be insufficient to characterize
chiral supramolecular assemblies. A comparison of the results
for H2 helices with different basis sets shows that the aug-cc-
pVDZ results qualitatively agree with the results of the larger
aug-cc-pVTZ basis set. Reasonable results are also obtained
using basis sets with a reduced number of diffuse functions,
allowing for more efficient computation of the OR.
The outcomes of this study suggest that the implementation

of periodic boundary condition methods for the evaluation of
the OR seems the best approach to study the optical activity of
solids, and this work is currently underway in our group.
Furthermore, the insight gained from these helix models will
help us to tune various parameters of the PBC procedure to
strike the right balance between accuracy and feasibility.
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Figure 9. Plots of contributions to/components of B̃ (a.u.) for a H2 helix with 15° rotation about the H atom and COM axes. Calculations were
performed using aug-cc-pVTZ basis set. The separation between hydrogen molecules is 2.0 Å. Each value is scaled by the inverse of the number of
units in the helix.

Figure 10. Plots of Trace(B̃) (a.u.) for a H2 helix with 15° rotation
about the COM axis. The separation between hydrogen molecules is
2.0 Å. Calculations were performed with the aug-cc-pVXZ basis sets,
X = T,Q,5, and with the corresponding p-cc-pVXZ basis sets
containing only p-type diffuse functions.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b12084
J. Phys. Chem. C 2019, 123, 4329−4340

4338

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b12084
http://dx.doi.org/10.1021/acs.jpcc.8b12084
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b12084&iName=master.img-009.jpg&w=450&h=342
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b12084&iName=master.img-010.jpg&w=239&h=183


Plots of Tr(B̃) of LiH helices for alternate separations
(7.5 Å, 10.0 Å), basis set (aug-cc-pVTZ), and level of
theory (Hartree−Fock) of the 30° H-axis rotated LiH.
Plots of the converged components of B̃, along with the
contributions of β and A to these components, for H2,
N2, F2, and HF with respect to dihedral angle along each
rotation axis. Single sin fit curves of Tr(B̃) for N2, F2,
and HF (PDF)
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